Duality for multiobjective optimization problems with convex objective functions and D.C. constraints

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality for multiobjective optimization problems with convex objective functions and D.C. constraints

In this paper we provide a duality theory for multiobjective optimization problems with convex objective functions and finitely many D.C. constraints. In order to do this, we study first the duality for a scalar convex optimization problem with inequality constraints defined by extended real-valued convex functions. For a family of multiobjective problems associated to the initial one we determ...

متن کامل

Duality for vector equilibrium problems with constraints

‎In the paper‎, ‎we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior‎. ‎Then‎, ‎their applications to optimality conditions for quasi-relative efficient solutions are obtained‎. ‎Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...

متن کامل

Multiobjective DC Programming with Infinite Convex Constraints

In this paper new results are established in multiobjective DC programming with infinite convex constraints (MOPIC for abbr.) that are defined on Banach space (finite or infinite) with objectives given as the difference of convex functions subject to infinite convex constraints. This problem can also be called multiobjective DC semi-infinite and infinite programming, where decision variables ru...

متن کامل

Conjugate duality for multiobjective composed optimization problems

Given a multiobjective optimization problem with the components of the objective function as well as the constraint functions being composed convex functions, we introduce, by using the Fenchel-Moreau conjugate of the functions involved, a suitable dual problem to it. Under a standard constraint qualification and some convexity as well as monotonicity conditions we prove the existence of strong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2006

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2005.06.067